Multi-scale decomposition of point cloud data based on wavelet transform

نویسندگان

چکیده

ä¸ºäº†å‡å°å¤šæºè·¨å°ºåº¦ç‚¹äº‘æ•°æ®å°ºåº¦ä¸Žæ•°æ®é‡ä¸Šçš„å·®å¼‚ï¼Œæå‡ºäº†ä¸€ç§åŸºäºŽå°æ³¢å˜æ¢çš„ç‚¹äº‘å¤šå°ºåº¦åˆ†è§£æ–¹æ³•ã€‚å¯¹ç»†èŠ‚ä¸°å¯Œçš„å°å°ºåº¦ç‚¹äº‘æ•°æ®è¿›è¡Œå¤šå°ºåº¦åˆ†è§£ï¼Œä»¥åŠå°ºåº¦åˆ†è§£åœ¨è·¨å°ºåº¦ç‚¹äº‘æ•°æ®é å‡†ä¸­çš„åº”ç”¨è¿›è¡Œç ”ç©¶ã€‚é¦–å ˆï¼Œå¯¹å°å°ºåº¦ç‚¹äº‘è¿›è¡Œæ æ ¼å»ºæ¨¡ï¼Œå»ºç«‹å ¨å±€ç‚¹äº‘äºŒå€¼è¡¨è¾¾å‡½æ•°ã€‚æ ¹æ®ç¦»æ•£å°æ³¢å˜æ¢ç†è®ºï¼Œå¯¹æ ¼ç‚¹äº‘è¿›è¡Œå¤šæ¬¡çš„ä¸‰ç»´å°æ³¢åˆ†è§£ï¼Œåˆ©ç”¨å°æ³¢å°ºåº¦å‡½æ•°çš„ä½Žé€šç‰¹æ€§ï¼Œä¿ç•™ä½Žé¢‘ä¿¡æ¯æ¥èŽ·å–åŽŸå§‹å°å°ºåº¦ç‚¹äº‘çš„è¿‘ä¼¼å°ºåº¦æ•°æ®ã€‚ç„¶åŽï¼ŒåŸºäºŽé¢ç»´æ•°å’Œå·®ä½“ç»´æ•°å·®è¡¨å¾ä¸ŽåŽŸå§‹æ•°æ®çš„ç›¸ä¼¼åº¦ï¼Œç¡®å®šæœ‰æ•ˆçš„å°æ³¢åˆ†è§£çº§æ•°ã€‚æœ€åŽï¼Œå°†å„çº§åˆ†è§£å¾—åˆ°çš„ç‚¹äº‘æ•°æ®ä¸Žå¤§å°ºåº¦ç‚¹äº‘æ•°æ®è¿›è¡Œç²¾ç¡®é å‡†ï¼Œå¹¶å°†é å‡†å ³ç³»åº”ç”¨äºŽåŽŸå§‹ç‚¹äº‘ï¼Œæé«˜è·¨å°ºåº¦ç‚¹äº‘çš„é å‡†ç²¾åº¦ã€‚å®žéªŒç»“æžœè¡¨æ˜Žï¼šæœ¬æ–‡æå‡ºçš„å¤šå°ºåº¦åˆ†è§£æ–¹æ³•èƒ½å¤Ÿå¯¹æ•°æ®è¿›è¡Œæœ‰æ•ˆåˆ†è§£ï¼Œåº”ç”¨äºŽæŸèˆªç©ºå‘åŠ¨æœºå¶ç‰‡å¤šå°ºåº¦æµ‹é‡ä¸­ï¼Œå°†æ˜¾å¾®æµ‹é‡çš„å±€éƒ¨æ°”è†œå­”å°å°ºåº¦ç‚¹äº‘æ•°æ®ä¸Žæ•´ä½“å¶ç‰‡ç»“æž„å ‰æ•°æ®é å‡†ï¼Œé å‡†ç²¾åº¦æå‡äº†61.36%ã€‚è¯¥åˆ†è§£æ–¹æ³•åº”ç”¨äºŽå¶ç‰‡è¾¹ç¼˜ä¸Žæ ¼é›¶ä»¶å¤šå°ºåº¦æµ‹é‡ä¸­ï¼Œé å‡†ç²¾åº¦åˆ†åˆ«æå‡äº†48.59%,43.86%ã€‚æ‰€æçš„ç‚¹äº‘å¤šå°ºåº¦åˆ†è§£æ–¹æ³•èƒ½å¤Ÿæœ‰æ•ˆåˆ†è§£å°å°ºåº¦ç‚¹äº‘æ•°æ®ï¼Œå¤§å¹ æå‡è·¨å°ºåº¦æ•°æ®çš„é å‡†ç²¾åº¦ã€‚

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medical Image Fusion Based on Wavelet Multi-Scale Decomposition

This paper describes a method to decompose multi-scale information from different source medical image using wavelet transformation. The data fusion between CT image and MRI image is implemented based on the coefficients fusion rule which included choice of regional variance and weighted average wavelet information. The result indicates that this method is better than WMF, LEF and RVF on fusion...

متن کامل

Wavelet Multi-Scale Transform Based Foreground Segmentation and Shadow Elimination

An algorithm using wavelet multi-scale transform for segmenting foreground moving objects and suppressing shadow is proposed. The optimal selection of threshold is automatically determined which does not require any complex supervised training, manual calibration or hypothesis. The proposed algorithm is efficient enough to segment foreground moving objects with low contrast against the backgrou...

متن کامل

EMGdi signal enhancement based on ICA decomposition and wavelet transform

Diaphragmatic electromyogram (EMGdi) signal plays an important role in the diagnosis and analysis of respiratory diseases. However, EMGdi recordings are often contaminated by electrocardiographic (ECG) interference, which posing serious obstacle to traditional denoising approaches due to overlapped spectra of these signals. In this paper, a novel method based on wavelet transform and independen...

متن کامل

Fusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation

Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...

متن کامل

Image Fusion Using Multi Decomposition Levels of Discrete Wavelet Transform

Many researchers are concerning with using powerful image processing tools to achieve high quality images for their applications. Recently, great interest has been arisen on using wavelet transforms [1-10] to analysis multi-resolution images and to fuse remote sensing images. Image fusion especially in remote sensing applications is one of the fields that growing continuously. Many methods have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Guangxue jingmi gongcheng

سال: 2023

ISSN: ['1004-924X']

DOI: https://doi.org/10.37188/ope.20233103.0340